• Advertise
  • Contact Us
  • Write For Us
  • Our Team
Extraction Magazine
No Result
View All Result
  • Botanical Extraction
    • Cannabinoids
    • Psychedelics
    • Nutraceutical
    • Product Refinement
  • Industry News
    • Business
    • Sustainability
    • Safety & Compliance
    • Partners
  • Extraction Technology
    • Equipment
    • Methods
    • Solvents
    • DIY Extraction
    • Analytical Techniques
  • Medical Research
  • Glossary
  • Business Directory
  • Botanical Extraction
    • Cannabinoids
    • Psychedelics
    • Nutraceutical
    • Product Refinement
  • Industry News
    • Business
    • Sustainability
    • Safety & Compliance
    • Partners
  • Extraction Technology
    • Equipment
    • Methods
    • Solvents
    • DIY Extraction
    • Analytical Techniques
  • Medical Research
  • Glossary
  • Business Directory
No Result
View All Result
Extraction Magazine
No Result
View All Result
Home Botanical Extraction

Tuning Solvent Pressure for Hemp

Lance Griffin by Lance Griffin
April 2, 2021
in Botanical Extraction
Tuning Solvent Pressure for Hemp

As hemp extraction flourishes, researchers are examining techniques such as supercritical carbon dioxide (CO2) in more detail. Recently, Moreno et al [1] investigated the role of increasing the pressure of CO2 when extracting cannabidiol (CBD) from hemp cultivars. They also studied the effect of decarboxylation and adding ethanol as a co-solvent. For comparison, the researchers extracted hemp using near-critical hydrocarbons.

Initially, they explain that “despite the popularity and widespread acceptance of supercritical CO2 extraction among manufacturers and aficionados alike, scientific publications on the subject are still scarce.”

READ ALSO

CBD‑Specific Gear Hits US $65 M Market Milestone

Turnkey Extraction and Purification Units for Cannabis Processing

Prior to extraction, milled hemp material from two cultivars—one sample of cultivar A (undisclosed) and two samples of cultivar B (Ferimon12)—was either decarboxylated or left raw. Decarboxylation was carried out at 150º C for either 20 minutes (A), 60 minutes (B-1), or 50 minutes (B-2).

The researchers calculated apparent solubility from the slope of grams of extract per kg of CO2—in other words, solubility as extract yield versus amount of CO2 used. Once this was calculated for a given pressure, they increased the pressure. They recorded apparent solubility at the 2 L scale and 40º C. Pressure started at 200 bar and was increased sequentially by 100, 200, and 300 bar, up to 1300 bar. Above 700 bar, the authors explain, pressure is considered ultra-high. An ethanol co-solvent (5%) was also added at increasing pressures.

Overall, they noted that “[s]olubility increases linearly with CO2 density [(higher pressures)] for all sets of extraction data, i.e., raw material on a dry and wet basis, as well as decarboxylated material.” That said, the highest concentration of CBD occurred at a low pressure (200 bar) and yield (6.2%) with 45 g CBD per 100 g extract. At 300 bar, apparent solubility for dry material was recorded at 11 g/kg CO2. The higher pressures were favorable to acidic cannabinoid extraction.

Decarboxylated forms were more soluble in CO2 compared to acidic forms. The ethanol co-solvent (and higher pressures) significantly boosted yield of acidic cannabinoids like cannabidiolic acid (CBDA). Total yield with supercritical CO2 reached 12%; total cannabinoid yield (as extracted from the source material) ranged from 51-100%.

Liquid propane or dimethyl ether (DME) were also tested as solvents at 2 L, 55º C, and 40 bar. Propane had lower total extraction yield (8.2%) explained by its lack of affinity for water in the raw feed material. However, propane was more efficient at extracting acidic cannabinoids with cannabinoid yields ranging from 74% to 99%. Regarding decarboxylated material, propane extracts were richer in CBD (73.6% of total cannabinoids) compared to CO2 + ethanol (57.2% of total cannabinoids). DME was also very efficient but extracted significant amounts of lipids and waxes.

Key takeaways from the various experiments include the fact that ultra-high pressure supercritical CO2 with a co-solvent appears most suitable for acidic cannabinoids. Another key finding regarded the color and consistency of each oil: lower pressures produced thin, golden oils rich in CBD, while higher pressures thickened the oil and darkened the color.

The authors conclude, “Supercritical CO2 and liquefied propane allow efficient and flexible extraction of cannabinoids from raw and decarboxylated plant material.”

Reference

  1. Moreno T, et al. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. The Journal of Supercritical Fluids. 2020;161(104850). [Impact Factor: 3.744; Times Cited: 6 (Semantic Scholar)]

Image: Julia Teichmann from Pixabay

Related Posts

Modern CBD extraction equipment in a commercial cannabis processing facility
Botanical Extraction

CBD‑Specific Gear Hits US $65 M Market Milestone

September 22, 2025
Turnkey cannabis extraction lab equipment integrating extraction, purification, and distillation in a single automated system
Botanical Extraction

Turnkey Extraction and Purification Units for Cannabis Processing

July 1, 2025
Wide angle view at two workers wearing protective suits while inspecting production at modern chemical plant, copy space
Botanical Extraction

Collaborative Approaches in Botanical Extraction: Bridging Science and Industry

June 7, 2025
Taxonomic Framework of Cannabis
Cannabinoids

The Taxonomic Framework of Cannabis: Nomenclature of Nugs

May 29, 2025
The Art of Extraction: Unlocking Nature’s Fragile Secrets
Botanical Extraction

The Art of Extraction: Unlocking Nature’s Fragile Secrets

May 15, 2025
Areca Catechu
Botanical Extraction

Inside the Betel Nut High: Exploring the Mind-Bending Effects of Areca Catechu

May 1, 2025
Next Post
Hours Not Days: Green Mill Redefines Economics of Extraction With Novel Method for Winterizing Cannabinoids Using Carbon Dioxide

Hours Not Days: Green Mill Redefines Economics of Extraction With Novel Method for Winterizing Cannabinoids Using Carbon Dioxide

LATEST ARTICLES

Modern CBD extraction equipment in a commercial cannabis processing facility

CBD‑Specific Gear Hits US $65 M Market Milestone

September 22, 2025
Buffalo Hybrid Extraction System

Multi‑Tech Platforms: Hybrid Extraction On Tap

July 20, 2025
AI-powered cannabis cultivation system optimizing terpene and cannabinoid production with real-time data analytics

How AI-Designed Formulas Just Cracked the $2.3B Terpene Code

July 14, 2025
Cannabis oil and concentrates representing the booming extracts market projected at $16.6 billion in 2025

Cannabis Extracts Market Projected at US $16.6 B in 2025

July 7, 2025

Subscribe Now

Subscribe to our newsletter now to receive quick updates from us



    Background
    About

    Extraction Magazine is the trusted provider of botanical extraction news, ever-changing politics, cool gadgets and technologies, and methods for producing safe, ethical, and compliant formulations.

    Advertisers
    Navigation
    • Botanical Extraction
    • Industry News
    • Extraction Technology
    • Medical Research
    • Glossary
    • Business Directory
    Recent Posts
    • CBD‑Specific Gear Hits US $65 M Market Milestone
    • Multi‑Tech Platforms: Hybrid Extraction On Tap
    • How AI-Designed Formulas Just Cracked the $2.3B Terpene Code
    • Cannabis Extracts Market Projected at US $16.6 B in 2025
    Subscribe to our Newsletter
    loader

    Sitemap

    © 2025 Extraction Magazine is the trusted provider of botanical extraction news and the leading media in the ever-changing extraction industry.

    No Result
    View All Result
    • Industry News
    • Botanical Extraction
    • Medical Research
    • Medical Research
    • Glossary
    • Our Team
    • Write For Us

    © 2023 Extraction Magazine is the trusted provider of botanical extraction news and the leading media in the ever-changing extraction industry.