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Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties. Despite
being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is
lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented
many researchers from studying cannabis, its products, and their effects in humans. Cannabis resin contains
hundreds of different terpene and cannabinoid metabolites. Many of these metabolites have not been con-
clusively identified. Our understanding of the genomic and biosynthetic systems of these metabolites in can-
nabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack
of consistency with regard to the terpene and cannabinoid composition of different cannabis ‘strains’. Likewise,

claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough

scientific validation.

1. Introduction

Cannabis sativa (cannabis) is thought to have originated from central
Asia, and has been domesticated for over 5000 years [1]. Cannabis
varieties that are low in psychoactive cannabinoids are used for the
production of fiber and oilseed. However, the most valuable cannabis
product today is the terpene- and cannabinoid-rich resin with its var-
ious psychoactive and medicinal properties. The resin is produced and
accumulates in glandular trichomes that densely cover the surfaces of
female (pistillate) inflorescences and, to a lesser degree, the foliage of
male and female plants (Fig. 1). In total, more than 150 different ter-
penes and approximately 100 different cannabinoids [2] (Fig. 2) have
been identified in the resin of different cannabis types (Table 1). The
predominant cannabinoids in cannabis grown for medicinal or recrea-
tional use are A9—tetrahydrocannabinolic acid (THCA) and cannabi-
diolic acid (CBDA). While cannabinoids are the primary psychoactive
and medicinal components of cannabis resin, volatile terpenes (mono-
terpenes and sesquiterpenes) contribute many of the different fragrance
attributes that influence consumer preferences.

Different cannabis types and their derived consumer products are
commonly referred to with ‘strain’ names. These names often relate to
fragrance attributes conferred, at least in part, by terpenes [3]. Dif-
ferent ‘strains’ may be distinguished by morphological features or dif-
ferences in the chemical composition of the resin. However, due to a
history of largely illicit cannabis production, cannabis ‘strains’ are often
poorly defined genetically. ‘Strains’ may lack reproducibility with
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regard to profiles of terpenes and cannabinoids [4,5]. The species en-
compasses large genetic diversity, with most strains having high levels
of heterozygosity and genetic admixture [5,6]. Cannabis is wind-polli-
nated, which also contributes to variability of cannabis metabolites. As
a result, many cannabis ‘strains’ lack the level of standardization that
producers and consumers are accustomed to with other crop plants,
such as genetically and phenotypically well-defined grapevine varieties.
In the absence of proper genetic or genomic characterization, some
attempts have been made at chemotaxonomic classification of cannabis
‘strains’ based on terpenes, and cannabis plants have also been de-
scribed as belonging to different chemotypes (Table 1). However, the
complexity of terpene biosynthetic systems, and the many different
sources of terpene variation, renders these efforts often futile; in gen-
eral, concepts of chemotaxonomy have been outdated by genome sci-
ences, and chemotypes cannot reliably substitute for properly geno-
typed plants.

With the lifting of some of the legal restrictions on cannabis re-
search in Canada, and in some other jurisdictions, there is now an op-
portunity to build stronger scientific knowledge of the genomic, mo-
lecular and biochemical properties that define terpene and cannabinoid
profiles in different cannabis ‘strains’. This in turn can support the de-
velopment of a larger number of well-defined cannabis varieties.
Another aspect that requires new research are the various effects that
are attributed to cannabis terpenes in humans. While some of the effects
of the cannabinoids have been scientifically explained, there is a great
deal of uncertainty about the effects of cannabis terpenes in humans
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A)

Fig. 1. Cannabis inflorescence and stalked glandular trichomes. A) Apical inflorescence from the strain Purple Kush, eight weeks post onset of flowering. B)
Floret cluster from the strain Lemon Skunk, five weeks post onset of flowering. C) Stalked glandular trichomes on the surface of strain Finola pistillate flowers.
Scanning electron microscopy and image credit for C) thanks to Samuel Livingston, UBC, Department of Botany.

beyond fragrance perception.

2. Chemistry, biosynthesis and genomics of terpene diversity and
variation in cannabis

Terpene composition is a phenotypic trait that shows much varia-
tion across different cannabis ‘strains’ (Table 1). The majority of ter-
penes found in cannabis are hydrocarbons, which are the direct pro-
ducts of terpene synthase (TPS) enzymes [7,8], as opposed to more
complex terpenes that require modification by other enzymes such as
cytochrome P450s. Therefore, the chemical diversity of cannabis ter-
penes reflects the diversity of TPS enzymes encoded in the cannabis
(Cs)TPS gene family.

The monoterpene myrcene as well as the sesquiterpenes [-car-
yophyllene and o-humulene appear to be present in most cannabis
‘strains’. Other common compounds include the monoterpenes a-
pinene, limonene, and linalool as well as the sesquiterpenes bisabolol
and (E)-B-farnesene. It is important to note that some terpenes, in
particular sesquiterpenes, remain difficult to identify due to the lack of
authentic standards for many of these compounds. As a result, reports
of terpene profiles in cannabis may include unknown compounds, rely
on tentative identification, or present incomplete profiles of selected
compounds. Stereochemistry is also not consistently described, or is
often ignored, in reports on cannabis terpenes. These issues make it
difficult to fully assess the diversity of terpenes in cannabis using the
available data and make it problematic to compare the results of dif-
ferent studies.

The terpenes found in the cannabis resin, as well as the isoprenoid
moiety of the cannabinoid structure, are produced through the iso-
prenoid biosynthetic system, which originates in the mevalonic acid
(MEV) pathway in the cytosol and the methylerythritol phosphate
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(MEP) pathway in plastids. Monoterpenes and cannabinoids have a
common ten-carbon isoprenoid precursor, geranyl diphosphate (GPP,
Cy0), while sesquiterpenes are produced from the fifteen-carbon iso-
prenoid farnesyl diphosphate (FPP, C;s). Using GPP or FPP as sub-
strates, monoterpene synthases (mono-TPS) and sesquiterpene syn-
thases (sesqui-TPS) produce the different structures of mono- and
sesquiterpenes found in the cannabis resin (Fig. 2). A recent analysis of
the Purple Kush cannabis genome and transcriptome sequences iden-
tified more than 30 different CsTPS genes [8]. Only nine CsTPS have
been functionally characterized and published to date [8,9]. As with
many other plant TPS [7], eight of the nine characterized CsTPS are
multi-product enzymes that generate several different terpene struc-
tures from either GPP or FPP [8]. The multi-product nature of CsTPS
can explain why some terpenes, such as a-humulene and -car-
yophyllene, typically co-occur in different cannabis samples. The CsTPS
responsible for many of the different terpenes found in cannabis are still
unknown.

Variation of the composition of the CsTPS gene family and variation
in CsTPS gene expression is likely to explain observed variations of
terpene profiles across the species. However, the level of variation of
the size, composition and expression of the CsTPS gene family, and
factors that influence CsTPS gene expression, are for the most part
unknown. For example, variation of terpene biosynthesis at the
genome, transcriptome, proteome and biochemical levels have been
shown in other plants to account for phenotypic intra-specific variation
of terpene profiles [e.g. 10,11]. Terpene profiles may also substantially
change as a result of differential CsTPS gene expression over the course
of plant development or in response to environmental factors. In ad-
dition, developmental or tissue specific expression of CsTPS may affect
variation of terpene profiles in cannabis products. None of these factors
of terpene variation, which may contribute to poor reproducibility of
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Fig. 2. Schematic of terpene and cannabinoid biosynthesis in cannabis. 5-Carbon isoprenoid building blocks isopententyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP) are condensed to form geranyl diphosphate (GPP) (C10) or farnesyl diphosphate (FPP) (C15). Terpene synthases (TPS) convert GPP or FPP into
terpenes. Aromatic prenyltransferases (aPTs) condense GPP with olivetolic acid to form cannabigerolic acid (CBGA), which is cyclized by cannabinoid synthases to
produce cannabinoids. Cannabinoids: C1: cannabigerolic acid, C2: cannabichromenic acid, C3: cannabidiolic acid, C4: tetrahydrocannabinolic acid. Monoterpenes:
M1: B-pinene, M2: a-pinene, M3: B-thujone, M4: 3-carene, M5: terpinolene, M6: limonene, M7: terpineol, M8: 1,8-cineole, M9: a-terpinene, M10: linalool, M11:
myrcene, M12: (Z)-B-ocimene. Sesquiterpenes S1: a-elemol, S2: (E)-B-farnesol, S3: (E)-B-farnesene, S4: bisabolol, S5: (+)-a-bergamotene, S6: §-cadinene, S7: y-
eudesmol, S8: valencene, S9: eremophilene, S10: 3-himachalene, S11: a-guaiene, S12: germacrene D, S13: alloaromadendrene, S14: B-caryophyllene.

terpene composition, have been systematically studied in cannabis.
The oxygen functionality of simple terpene alcohols found in can-
nabis such as linalool or bisabolol may result from the enzymatic ac-
tivity of CsTPS as has also been shown for TPS in other plants species
[8]. Other terpene derivatives detected in cannabis may arise non-en-
zymatically due to oxidation or due to thermal- or UV-induced re-
arrangements during processing or storage, such as caryophyllene
oxide, B-elemene, or derivatives of myrcene [8,12]. These non-enzy-
matic modifications may add a level of variation that is independent of
the plant genome and biochemistry. When terpene analysis is
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performed with dried plant material, variable quantitative losses of
terpenes, especially the more volatile monoterpenes [13], may be an-
other cause of terpene variation.

To resolve issues of poor reproducibility of terpene profiles in can-
nabis, it will be essential to perform rigorous studies with a diversity of
cannabis genotypes grown under controlled environmental conditions
and analyze terpene profiles quantitatively and qualitatively over the
course of plant development. This would need to include organ-, tissue-
and cell-type specific terpene analysis, and would have to include
controlled experiments to assess effects of environmental conditions
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Publications listing cannabis terpene profiles. Purpose refers to the stated objective of the study. Origin of plant material indicates what the authors stated as the
source of their cannabis or extracts. Number of terpenes identified includes all named or numbered compounds listed by the authors, including those not identified
using authentic standards. Publications are listed in order of date published, from earliest to most recent.

# of terpenes identified Origin of plant material Purpose of analysis Reference
25 Wild-grown in Kashmir Plant Biology [371
50 Forensic samples Classification [38]
66 Grown by researchers Plant Biology [13]
48 Breeders, researchers, law enforcement Classification [39]
16 Grown by researchers Plant Biology [40]
27 Bedrocan BV Classification [41]
49 Grown by researchers outdoors Metabolite survey [42]
28 Grown by researchers Metabolite survey [43]
20 Coffee shops in the Netherlands and Bedrocan BV Classification [44]
12 Bedrocan BV Industrial [45]
53 Forensic samples Metabolite survey [12]
13 Grown outdoors Industrial [46]
27 Indoor cultivator in California Industrial [471
28 Submissions from medical patients Classification [4]
28 Grown by researchers Plant Biology [48]
17 Bedrocan BV Industrial [49]
50 Bedrocan BV Classification [50]
16 Submitted by dispensary Classification [3]
14 Licensed producers in Canada Classification [51]
20 Indoor cultivator in New Mexico, assorted growers Classification [52]
21 Dispensary in California Medical [53]
45 Grown outdoors Medical [54]

such as light, irrigation, and nutrients. Such experiments should include
not only terpene metabolite analysis, but also a comprehensive tran-
scriptome profiling of CsTPS gene expression. The results of such a
study would enable much needed proper assignment of reproducible
terpene profiles to different ‘strains’ and support the standardization of
cannabis varieties and derived consumer products.

3. Biosynthesis of cannabinoids

Compared to terpene biosynthesis, cannabinoid biosynthesis has
been a priority of the limited research on metabolite biosynthesis in
cannabis to date. Much of the core cannabinoid biosynthetic pathway
has been characterized [14-17]. The primary branch-point inter-
mediate for cannabinoid biosynthesis is cannabigerolic acid (CBGA).
CBGA is produced by the prenylation of the aromatic olivetolic acid
with a geranyl moiety. An aromatic prenyltransferase (aPT) was re-
cently cloned and shown to be active in a metabolically engineered
yeast to produce CBGA [16], and a related cannabis membrane protein
with prenyltransferase activity was previously reported in the patent
literature [18]. Similar enzymes were shown to prenylate acylphlor-
oglucinols to produce bitter acids in hop, a close relative of cannabis
[19,20]. The precise origin of the fatty acid precursors of olivetolic acid
is unknown. Genes of three different cannabinoid synthases, specifically
THCA synthase (THCAS), CBDA synthase (CBDAS) and cannabichro-
menic acid synthase (CBCAS), have been published [21-23]. However,
the genes and enzymes responsible for the many minor cannabinoids,
including propyl sidechain variants, remain unknown.

4. Effects attributed to terpenes in cannabis

Arguably, the only effect of cannabis terpenes on humans that is
unquestionable are the fragrance attributes of different mono- and
sesquiterpene volatiles and their mixtures. Depending on the variable
composition of cannabis terpene profiles, different ‘strains’ elicit dif-
ferent fragrance impressions, which may affect consumer preference
[24]. However, other attributes assigned to terpenes in cannabis pro-
ducts, including medicinal properties, remain for now outside of the
space of scientific evidence.

The so-called ‘entourage effect’ is a popular idea. It suggests a
pharmacological synergy between cannabinoids and other components
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of cannabis resin, in particular terpenes [25,26]. Putative aspects of the
entourage effect include the treatment of depression, anxiety, addic-
tion, epilepsy, cancer, and infections. The anecdotal notion of a sy-
nergistic effect appears to stem from the perception among cannabis
users that different ‘strains’ have different physiological effects. There is
no doubt that the large chemical space of thousands of plant terpenes
and terpenoids includes many biologically active molecules. Some ter-
penoids, such as the anticancer drug Taxol, are potent and highly va-
luable pharmaceuticals, the effects of which are supported by the full
range of pharmacological and clinical studies. In one of the few ex-
amples of the entourage effect being tested, terpenes were found not to
contribute to cannabinoid-mediated analgesia in rats [27]. With the
possible exception of the sesquiterpene 3-caryophyllene, no molecular
mechanism has been demonstrated to explain a potential synergy of
terpenes with cannabinoids. One potential explanation for the effects
attributed to terpenes is revealed in a recent review [28], pointing out
that the placebo effect is partially mediated through the en-
docannabinoid system, which may explain some of the perceived effects
of cannabis products.

The sesquiterpene (-caryophyllene is prominent in many cannabis
‘strains’ and products. The molecule binds to the mammalian CB,
cannabinoid receptor, which may provide a plausible mechanism for
interaction with cannabinoids and a starting point for future research
[29]. B-caryophyllene is one of the least variable terpene components of
cannabis (Table 1), which would suggest that it cannot explain ‘strain’-
specific effects in humans. The proposed synergistic effects of terpenes
in the effects of cannabis in humans is an area that will require careful
research, which will now be possible in those jurisdictions in which
some of the legal restrictions have been lifted.

5. Claims of anticancer effects of cannabis and cannabis terpenes
may do more harm than good

Certain monoterpenes have been shown to block tumor formation or
inhibit cell cycle progression in vivo and in rats [30-32]. However, the
amounts of terpenes required to produce anti-proliferative effects in
rats are excessively high with up to 10% of the animals’ diet [30]. Si-
milarly, cannabinoids may inhibit tumor formation in animal models of
cancer [33]. Laboratory studies such as these may have led to the
suggestion that cannabis extracts, with their combination of
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cannabinoids and terpenes, have anti-cancer properties [25,26]. How-
ever, to our knowledge, there is no conclusive evidence to support
claims of anticancer activity of terpenes consumed with cannabis pro-
ducts. While the ethanolic extract of cannabis flowers has higher anti-
tumor activity than pure THC, this effect was not attributed to any of
the five most abundant terpenes [34].

In general, it is important to remember that cannabis is often con-
sumed by smoking or as a vapor. This includes cannabis consumption
by young adults. Consumer habits such as inhaling combusted or va-
porized cannabis products must be considered a health risk, including
the potential risk of causing cancer or other health issues [35,36], be-
fore promoting unsupported claims of anti-cancer effects of cannabis.

6. Perspective and future directions

Genomics has been slow to reach cannabis, largely due to legal re-
strictions on funding agencies and researchers. A first reference quality
cannabis genome was published in 2018 [23], enabling the genome-
wide analysis of genes for metabolic pathways systems in cannabis.
More genotyping and sequencing studies are required to encompass the
full diversity of the species. A special emphasis is needed on Eurasian
and African landraces, which have been under-sampled. Critical tools
for functional genomics of metabolic systems, and ultimately crop im-
provement, such as genetic transformation or genome editing, are not
yet established for cannabis research in the public domain. Beyond the
genes that encode enzymes for the biosynthesis of terpenes and can-
nabinoids in cannabis, research is needed to elucidate the factors that
control expression of these biosynthetic systems. This would include,
for example, the regulation of cell-type specific gene expression in the
context of the development of glandular trichomes, plant architecture,
and onset of female flowering.

As restrictions on research with cannabis relax, cannabis is likely to
become a more popular research organism both for the gain of basic
knowledge and parctical applications. Cannabis is a useful system for
terpene research as it produces a large volume of a diverse terpene-rich
resin on its trichome-covered surfaces. The abundance and size of its
glandular trichomes make it a useful system for research in cell spe-
cialization and regulation of terpene and cannabinoid metabolism.

At present, of the hundreds of terpene and cannabinoid metabolites
that have been identified in cannabis, the biosynthesis of less than 30
has been characterized. Future biochemical and functional work on
biosynthetic systems in cannabis would benefit from a focused com-
munity effort to produce and archive a complete and reproducible set of
metabolite and genomic data for one or a few genotypes that will serve
as a reference framework. In parallel, a larger number of cannabis types
need to be properly genotyped and phenotypically characterized (e.g.
with regard to their metabolites) to overcome current issues with in-
consistencies in what is referred to as ‘strains’. The goal would be to
establish reproducible cannabis varieties for use in research and in the
industry, comparable to the well-defined grapevine varieties that are
used in viticulture. Moving from ‘strains’ to varieties will require the
cooperation of cannabis researchers, breeders and growers. To our
knowledge, so far, no industry association has taken a lead to set
community standards and practices or define community-accessible
varieties. Researchers and industry in Canada, as the first developed
nation to have fully legalized cannabis, are uniquely positioned to lead
this effort.
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