• Advertise
  • Contact Us
  • Write For Us
  • Our Team
Extraction Magazine
No Result
View All Result
  • Botanical Extraction
    • Cannabinoids
    • Psychedelics
    • Nutraceutical
    • Product Refinement
  • Industry News
    • Business
    • Sustainability
    • Safety & Compliance
    • Partners
  • Extraction Technology
    • Equipment
    • Methods
    • Solvents
    • DIY Extraction
    • Analytical Techniques
  • Medical Research
  • Glossary
  • Business Directory
  • Botanical Extraction
    • Cannabinoids
    • Psychedelics
    • Nutraceutical
    • Product Refinement
  • Industry News
    • Business
    • Sustainability
    • Safety & Compliance
    • Partners
  • Extraction Technology
    • Equipment
    • Methods
    • Solvents
    • DIY Extraction
    • Analytical Techniques
  • Medical Research
  • Glossary
  • Business Directory
No Result
View All Result
Extraction Magazine
No Result
View All Result
Home Extraction Technology

Advances in Lipid Extraction Using Green Solvents

Petar Petrov by Petar Petrov
January 18, 2021
in Extraction Technology, Solvents, Sustainability
Advances in Lipid Extraction

Green solvents are meant to spare human health and the environment. They’re measured by green chemistry principles such as waste prevention, atom economy (i.e., full use of materials), less hazardous syntheses, safe chemical design, energy efficiency, renewability, reduced derivatives, catalysis, biodegradability, pollution prevention, and accident prevention. [1] In a perfect world, the perfect green solvent would get an A+ on each criterion. Green chemistry, however, may involve mitigating harm rather than a complete lack thereof.

A recent review explored green solvents for lipid extraction. [2] The solvents fell into one of three categories: organic-based solvents, ionic liquids (including deep eutectic solvents), and carbon dioxide (CO2).

READ ALSO

Multi‑Tech Platforms: Hybrid Extraction On Tap

Turnkey Extraction and Purification Units for Cannabis Processing

Lipid Extraction with Organic-Based Green Solvents

Organic-based green solvents include ethanol derived from renewable feedstock and even petroleum-derived solvents such as cyclopentyl methyl ether (albeit lacking renewability). However, the review also included terpene solvents, particularly D-limonene, α-pinene, and p-cymene.

The researchers note that, paired with Soxhlet extraction on microalgae, terpenes achieved 100% solvent recovery using a Simultaneous Distillation and Extraction Process (SDEP). [3] Purity levels indicated that the solvent could be recycled to other ends, including other SDEP processes.

Pretreatment prior to extraction with organic-based solvents can improve outcomes with techniques like ultrasound and microwave treatment that “[aim] to break the cell wall so that intracellular lipids become available for extraction.”

Lipid Extraction with CO2

Supercritical CO2 extraction is generally considered the gold standard for green extraction. [4] CO2 is better suited for extracting higher yields of lipids from microalgae compared to yeast cells. [5,6] Again, pretreatment can be instrumental to higher success rates, and “the appropriate [pretreatment] method is conditioned by the morphological characteristics of the material to be extracted.”

Because of CO2’s nonpolar nature, the addition of cosolvents like ethanol to increase the extraction of polar compounds has been investigated. However, success depends on what you’re trying to extract, with some studies revealing a reverse effect. [7,8] The review didn’t cover cannabis extraction (other than seeds) where cosolvents are commonly used to boost yield and efficiency.

Lipid Extraction with Ionic Liquids

Ionic liquids (ILs) are organic salts, stable and liquid at low temperatures (< 100°C). Because of the viscosity of ionic liquids – an obstacle to extraction efficacy – the use of a cosolvent is required. Methanol has proven to be one such effective cosolvent, though not a green solvent. Microwave and ultrasound irradiation also reduce the viscosity of ionic liquids.

Ionic liquids may seem greener in theory than in practice. Their synthesis may involve toxic compounds and consume lots of energy, and their biodegradability is dubious.

Deep eutectic solvents (DESs) are like ionic liquids in properties, but they are cheaper, easier, renewable, and biodegradable. Data on DESs is still limited, however.

Bottom Line

The reviewers note that the implementation of green extraction technologies, let alone the replacement of non-green ones, is a long process subject to market competition.

“With the reduction in price and the restriction and greater regulation of fossil solvents with stricter laws, the operating costs associated with the use of these solvents should include greater equipment monitoring and emissions control, which may result in increased costs in the use of traditional fossil solvents and pave the way for the use of greener technologies.” [2]

References:

  1. Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Oxford University Press; 2000.
  2. de Jesus SS, Filho RM. Recent advances in lipid extraction using green solvents. Renewable and Sustainable Energy Reviews. 2020;133(110289). Journal Impact Factor = 12.110; Times Cited = 2 (Semantic Scholar)
  3. Tanzi CD, Vian MA, Chemat F. New procedure for extraction of algal lipids from wet biomass: A green clean and scalable process. Bioresour Technol. 2013;134: 271–5. Journal Impact Factor = 7.539; Times Cited = 106 (Semantic Scholar)
  4. Lupoi J. From gaseous monster to superhero for green extraction and purification. Extraction Magazine. Jan-Feb 2021.
  5. Alhattab M, Kermanshahi-pour A, Brooks MS-L. Dispersed air flotation of Chlorella saccharophila and subsequent extraction of lipids – effect of supercritical CO2 extraction parameters and surfactant pretreatment. Biomass Bioenergy. 2019;127: 105297. Journal Impact Factor = 3.551; Times Cited = 5 (Semantic Scholar)
  6. Duarte SH, dos Santos P, Michelon M, Oliveira SMP, Martínez J, Maugeri F. Recovery of yeast lipids using different cell disruption techniques and supercritical CO2 extraction. Biochem Eng J 2017;125:230–7. Journal Impact Factor = 3.475; Times Cited = 13 (Semantic Scholar)
  7. Babova O, Occhipinti A, Capuzzo A, Maffei ME. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J Supercrit Fluids. 2016;107:358–63. Journal Impact Factor = 3.744; Times Cited = 13 (Semantic Scholar)
  8. Andrade KS, Trivellin G, Ferreira SRS. Piperine-rich extracts obtained by high pressure methods. J Supercrit Fluids 2017;128:370–7. Journal Impact Factor = 3.744; Times Cited = 17 (Semantic Scholar)

Image Credits: Gorkhs / Pixabay

Related Posts

Buffalo Hybrid Extraction System
Extraction Technology

Multi‑Tech Platforms: Hybrid Extraction On Tap

July 20, 2025
Turnkey cannabis extraction lab equipment integrating extraction, purification, and distillation in a single automated system
Botanical Extraction

Turnkey Extraction and Purification Units for Cannabis Processing

July 1, 2025
Green Extraction Techniques
Sustainability

Green Extraction Techniques and Smart Solvents for Bioactive Recovery

June 25, 2025
Industrial hybrid ultrasound-microwave extraction system showing 300% yield increase in modern botanical processing facility
Extraction Technology

Ultrasound and Microwave: Hybrid Extraction’s Yield Revolution

May 28, 2025
Laboratory vials and beakers with deep eutectic solvent formulations replacing toxic industrial solvents
Extraction Technology

Deep Eutectic Solvents: The Green Chemistry Frontier

May 2, 2025
PEF & Cold Plasma Pretreatments Break Efficiency Ceiling in Food and Bioprocessing
Extraction Technology

PEF & Cold Plasma Pretreatments Break Efficiency Ceiling in Food and Bioprocessing

April 26, 2025
Next Post
Extracting Cannabinoids at Scale: How Chromatography is Paving the Way for Highest Purity Compounds

Extracting Cannabinoids at Scale: How Chromatography is Paving the Way for Highest Purity Compounds

LATEST ARTICLES

Modern CBD extraction equipment in a commercial cannabis processing facility

CBD‑Specific Gear Hits US $65 M Market Milestone

September 22, 2025
Buffalo Hybrid Extraction System

Multi‑Tech Platforms: Hybrid Extraction On Tap

July 20, 2025
AI-powered cannabis cultivation system optimizing terpene and cannabinoid production with real-time data analytics

How AI-Designed Formulas Just Cracked the $2.3B Terpene Code

July 14, 2025
Cannabis oil and concentrates representing the booming extracts market projected at $16.6 billion in 2025

Cannabis Extracts Market Projected at US $16.6 B in 2025

July 7, 2025

Subscribe Now

Subscribe to our newsletter now to receive quick updates from us



    Background
    About

    Extraction Magazine is the trusted provider of botanical extraction news, ever-changing politics, cool gadgets and technologies, and methods for producing safe, ethical, and compliant formulations.

    Advertisers
    Navigation
    • Botanical Extraction
    • Industry News
    • Extraction Technology
    • Medical Research
    • Glossary
    • Business Directory
    Recent Posts
    • CBD‑Specific Gear Hits US $65 M Market Milestone
    • Multi‑Tech Platforms: Hybrid Extraction On Tap
    • How AI-Designed Formulas Just Cracked the $2.3B Terpene Code
    • Cannabis Extracts Market Projected at US $16.6 B in 2025
    Subscribe to our Newsletter
    loader

    Sitemap

    © 2025 Extraction Magazine is the trusted provider of botanical extraction news and the leading media in the ever-changing extraction industry.

    No Result
    View All Result
    • Industry News
    • Botanical Extraction
    • Medical Research
    • Medical Research
    • Glossary
    • Our Team
    • Write For Us

    © 2023 Extraction Magazine is the trusted provider of botanical extraction news and the leading media in the ever-changing extraction industry.